Metrics¶
-
metrics.cosine_similarity(vector1, vector2)¶ Metric to calcualte the cosine similarity between two vectors.
For example used for the SimilarityTask.
- Parameters
vector1 – input vector 1
vector2 – input vector 2
- Returns
cosine similarity between input vectors between -1 and 1
-
metrics.mean_cosine_similarity(vectors)¶ Metric to compute the mean cosine similarity of the given vectors.
For example used for the AnalogyTask.
- Parameters
vectors – input vectors
- Returns
mean cosine similarity
-
metrics.mean_pairwise_distance(vectors)¶ Metric to compute the mean pairwise distance.
For large input sizes use the mean_squared_pairwise_distance.
For example used for the Neighborhood Task.
- Parameters
vectors – input vectors
- Returns
mean pairwise distance
-
metrics.mean_squared_pairwise_distance(vectors)¶ Metric to compute the mean squared pairwise distance. It is equivalent to calculating the variance with n-1.
For example used for the Neighborhood Task.
- Parameters
vectors – input vectors
- Returns
mean squared pairwise distance
-
metrics.metric(func)¶
-
metrics.metrics= {'cosine_similarity': <function cosine_similarity>, 'mean_cosine_similarity': <function mean_cosine_similarity>, 'mean_pairwise_distance': <function mean_pairwise_distance>, 'mean_squared_pairwise_distance': <function mean_squared_pairwise_distance>}¶